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Objectives

In disease etiology research, patients are often assessed by multiple outcomes/biomarkers. In a two-arm
randomized clinical trial with K outcomes, conducting multiple two sample t-tests to determine treatment
effects on individual outcomes can result in Type I error inflation. To control this inflation and attempt to
preserve Power of the individual tests, we set a desired level α0.05 and chose between a variety of multiple-
comparison adjustment methods. The objective of this simulation was to compare the control of family-wise
error rate (FWER) and preservation of Power for the following four methods:

• Bonferroni method

• Holm’s step-down approach

• Hochberg’s step-up approach

• Resampling methods

Exploration of FWER and Power dynamics included the variation of these key parameters:

• The number of outcomes (K)

• Between-outcome correlations (ρ)

• Effect size (difference in µt − µc)

Methods Studied:

Bonferroni method: Reduce the significance level α (for individual tests) by αadj. = α/M

Holm’s step-down approach: Sort the M p-values such that p1 > p2 > · · · > pM . Begins by adjusting
the smallest p-value pM by PM,adj = min{M ∗ pM , 1}, and then adjust the subsequent pj with
j = M − 1,M − 2, . . . , 1 by Pj,adj = min{max(j ∗ pj , (j + 1) ∗ pj+1, ...,M ∗ pM ), 1}. Reject the null
hypothesis sequentially until a Pj,adj > α.

Hochberg’s step-up approach: Adjustment begins with the largest p-value, p1,adj = 1 ∗ p1, and adjust
the subsequent p-values by Pj,adj = {max(j ∗ pj , (j − 1) ∗ pj−1, ..., 1 ∗ p1)}. Reject the null hypothesis
when a Pj,adj < α and reject the subsequent hypothesis.

Holm and Hochberg are step-wise Bonferroni methods.

Resampling methods Define pmin = min{p1, p2, ..., pM} be the minimum p-values from the M tests, and
then generate the distribution of pmin using re-sampling data under the Null distribution.

Suppose (xi,1, ..., xi,k, yi,1, ..., yi,k) is a random sample from a two-arm clinical trial with k outcomes,
where (xi,1, ..., xi,k) is the k outcomes from the treatment group, while (yi,1, ..., yi,k) is that from
the control group. One can generate the distribution of pmin under the Null following a resampling
procedure.
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1. For each outcome k, we center the responses by their group specific means. i.e. y∗
i,k = yi,k − ȳk

and x∗
i,k = xi,k − x̄k, where ȳk and x̄k are sample means of the kth outcome in treatment and

control groups, respectively.

2. Resample y∗
i,k and x∗

i,k separately, and apply the two-sample t-test to the resampled data, and
calculate the pmin accordingly. Repeat this procedure ` times, and you obtain ` resampled pmin’s.

3. Let q1
min, q

1
min, ..., q

`
min be resampled pmins. The P-value of pmin can be calcuated by the proportion

of resampled pmins that are smaller than the observed pmin. i.e.

p− value = 1
`

∑̀
j=1

I{qj
min < pmin}

Scenarios Investigated:

At baseline, we assume that for each K outcome, the treatment and control arms follow an approximately
standard multivariate normal distribution with equal variance and a fixed sample size of N = 30, respectively.
Additionally, as we vary the parameters of interest, we further fix K = 20, ρ = 0, and µt − µc = (0, 1)
corresponding to the null (H0) and alternative (HA) hypotheses, respectively. In order to study how paramter
variation affects FWER and Power:

• (K) – The number of outcomes were varied on a 10 to 30 grid, under the null and alternative hypotheses
for FWER and Power, respectively.

• (ρ) – The between-outcome correlations were varied on a 0 to 0.9 grid, and assumed equal and fixed
between all pairs of treatment and control outcomes, respectively. Additionally, simulations were
performed under the null and alternative hypotheses for FWER and Power, respectively.

• (µt − µc) – The effect size was varied on a 0.5 to 1 grid, approximately corresponding to the number of
standard deviations from the mean (under approximately standard normal assumptions). In this case,
FWER is incalculable as the null hypothesis is synthetically not true; instead Power is calculated under
the alternative hypothesis.

Simulation Generation:

Utilizing the mvtnorm library, approximately standard multivariate normal samples of size N = 30 were
generated for K outcomes, where µi,j were constant and σ2

i,j ∼ U(0.8, 1.2) using Monte Carlo methods.
These data were repeatedly randomly simulated over the course of 1000 iterations. Covariance matrices for
multivariate normal sample generation were manipulated using the MATRIX library, ensuring symmetry and
utilizing an algorithm to find the closest positive definite matrix with respect to the random variance. Lastly,
the resampling method was performed using 100 bootstrap iterations for simulation speed, although 1000
would have been optimal.

Performance Measures:

FWER for each unadjusted and adjusted method was calculated by counting the number of simulations
where at least one of the p-values for the K-outcomes was significant (thus rejected under the null hypothesis)
and dividing it by the total number of simulations run (1000). Conversely, Power was calculated by counting
the number of K individual t-tests with significant p-values, under the alternative hypothesis, and dividing
by the total number of individual tests and simulations run (K · 1000).
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Simulation Results:

Varying Number of Outcomes

Under the null hypothesis, it was expected to see FWER be the same for both the Bonferroni and Holm
adjustment methods while Hochberg’s would be very similar. This was shown to be true according to our
simulation. However, the resampling method consistently had a higher FWER, especially at low number of
outcomes (K). Interestingly, we observed a “dip” trend among all adjustment methods as K increased from
10 to 20, and return to near original FWER state as K went from 20 to 30. As K increased, the difference in
FWER between the resampling and other methods decreased. (See Figure 1)

As K increased, we saw a decrease with regards to power for the Bonferroni and Holm methods while the
Hochberg and resampling methods were robust to changes to K. Overall, Bonferroni had the worst power
preservation while the other three methods exhibited much better preservation with the resampling method
performing the best. (See Figure 2)

Varying Correlation

Considering the effect that correlation (ρ) demonstrates with respect to FWER control, under the Null
Hypothesis (µt = µc), we fixed the correlation between all K = 20 observations, and varied ρ from 0
(uncorrelated) to 0.9 (highly correlated). Simulation results indicate that all p-value adjustment methods
remain near or below 0.05 even as ρ increases. Furthermore, as ρ increases, we see a reduction in the FWER
for all adjustment methods, with the resample method eliciting the greatest decrease in magnitude. It was
also interesting to note that the FWER for performing multiple tests with unadjusted p-values decreased
from more than 60% to less than 20% as ρ increased. (See Figure 3)

Next, the same simulation as performed under the Alternative Hypothesis (µt 6= µc) to observe the effect of
correlation on the Power of each method, again with K = 20, rho = (0−0.9), and an effect size of 0.5 and 1 for
visualization. At low effect size (µt−µc = 0.5), the Bonferroni, Hochberg, and Holm demonstrated the lowest
Power to detect this difference in means; although Hochberg and Holm methods showed an approximate
additive 10% increase in Power as ρ increased. Conversely, the resampled adjustment and unadjusted
methods demonstrated little change in Power as correlation increased, reamining relatively stagnant at ~50%.
Considering a larger effect size (µt − µc = 0.5), Power for all methods increased significantly however the
trend in Power with respect to correlation was less clear. Speculatively, it appeared as though Power increased
for all methods as ρ initially increased from 0 to 0.4, then decreased or remained stagnant as correlation
increased further. This may imply that for larger effect size, Power increases for low to moderately correlated
data, but is reduced or unnafected for highly correlated data. (See Figure 4)

Ultimately, we observed that the resampling adjustment method led to relatively good FWER control as
correlation increases, while maintaining much higher Power than the other adjustment methods (as high, or
higher than the unadjusted which has poor FWER control), and was robust to correlated data. However, the
Hochberg and Holm methods ellicited improved Power for increasingly correlated data, while Bonferroni was
likewise robust to correlation change at smaller effect sizes. Additionally, a similar simulation with Monte
Carlo generated random correlations between the K observations was considered but results are omitted here,
as there were not significantly different results or noteworthy trends compared to the fixed ρ simulations.

Varying Effect Size

Unsurprisingly, Power of the study increases as effect size increases. By definition Power is the probability to
reject the null when the alternative is true. If effect size increases, difference in means in this case, it should
generally easier to detect these differences and that reflects in our data. (See Figure 5)
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Conclusion

Overall the Bonferroni, Holm, and Hochberg readjustment methods performed the best at controlling FWER,
robust to changes in number of outcomes, K, and between outcome correlations ρ. The resampling method
consistently performed the best at preserving power robust to outcomes, correlation, and effect size, while
having only a marginally worse control on FWER. Although each adjustment method may be advantageous
in a particular scenario, with respect to FWER and power we would recommend the resampling method as
the most generally optimal adjustment method.
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Figure 1: Impact of Number of Outcomes on FWER
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Figure 2: Impact of Number of Outcomes on FWER
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Figure 3: Impact of Correlation on FWER
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Figure 4: Impact of Correlation on Power
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Figure 5: Impact of Effect Size on Power
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